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The idea for split questionnaire design is not new—in the early 70s, Good (1969, 1970) called 
for the development of split-questionnaire methods to maximize data collection efficiency. A 
decade later, Herzog and Bachman (1981) advised long questionnaires to be split in parts that 
are administered in different order. Yet, little attention has been focused on split questionnaire 
designs until Raghunathan and Grizzle (1995) demonstrated the potential advantages of split 
questionnaire designs in two simulation studies. The method is based on multiple matrix 
sampling design (Shoemaker, 1973; Munger and Lloyd, 1988) where a random sample of items 
is presented to each sampled individual. In contrast, split questionnaire design imposes 
restrictions on which items are administered to which individuals and shares some similarities 
with educational test designs (Holland and Wightman, 1982; Holland and Thayer, 1985).  Split 
Questionnaire Design (SQD) has the promise to reduce respondent burden, increase response 
rates, and possibly improve quality due to reduced respondent fatigue.  

More recently, another motivation for SQD has been argued as more important. Studies have 
shown mixed evidence on the expected association between survey length and nonresponse 
(e.g., Bogen, 1996; Heerwegh and Loosveldt, 2006), with some studies showing significant 
associations, especially in self-administered surveys (e.g., Dillman, Sinclair, and Clark 1993, 
Galesic and Bosnjak 2009, Heberlein and Baumgartner 1978). Depending on the study design, 
sample members may be equally likely to respond to longer or shorter surveys but may provide 
different responses by survey length due to fatigue. Peytchev and Peytcheva (2017) 
demonstrated that a key strength of SQD is reduction of measurement error related to survey 
length. This has implications not only for the motivation whether to use SQD, but also for how 
to create and order the modules within questionnaire splits. 

This review is organized in three sections: (1) a brief overview of SQD, (2) a review of methods 
to split questionnaires and assign to respondents, and (3) a review of the most relevant 
imputation methods, issues, and findings related to these methods. 

1. Basic overview of SQD

When SQD was first explored, the general approach was to split the full questionnaire into 
modules, which were then combined into smaller forms (questionnaires). The “full 
questionnaire”, “module” and “form” terminology will be used for this rest of this review. 
Graham et al. (2006) discussed efficiency gains due to using a three-form SQD where 
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missingness was assumed to be Missing Completely At Random (MCAR). They examined a four-
module design (X, A, B, C) where module X was asked of all respondents and the three pair-wise 
combinations between A, B and C were used to create the three forms as shown in Table 1 
below (table 2 from the original manuscript). The module asked of all respondents, X, consisted 
of survey items that required higher precision or items deemed important to inform imputation 
of omitted modules. The three-form approach allowed for the collection of more items than a 
single form survey of the same length and retained adequate or better power to examine 
associations between survey items. The authors noted that the order in which modules were 
assigned could change and that the total number of modules could be increased. Both 
approaches would lead to an increase in the total number of SQD instrument forms beyond the 
3-form design, if all combinations and permutations are realized.  

Table 1. The 3-Form Design, With X Set   

 Module 
Form X A B C 

1 1 1 1 0 
2 1 1 0 1 
3 1 0 1 1 

Note.  1 = questions asked; 0 = questions not asked. 
 

Many studies, including Raghunathan and Grizzle (1995) and Graham et al. (2006), showed 
promising results for SQD compared to a full survey design although there was often a loss in 
precision relative to the full questionnaire. Additionally, Ahmed et al. (2015) described the use 
of SQD on a survey in Pakistan where they compared the results directly to a full questionnaire. 
Means and standard deviations were calculated for all items; estimates from the SQD survey 
were not found to be significantly different from those based on the full questionnaire.  All of 
these studies consider the full questionnaire as the gold standard; this is a limitation to which 
we later return. 

The allocation of sample members to each form does not have to be equal. Chipperfield and 
Steel (2009) noted that a strong advantage of SQD is the flexibility to vary the sample size for 
different survey items, as some items may not need the same level of precision as others. The 
authors introduced a best linear unbiased estimator (BLUE) design-based approach for optimal 
allocation of survey items in a SQD based on minimizing variance subject to a fixed-cost or 
minimizing cost subject to a fixed variance. 

The loss of precision in estimates due to SQD was explored by Merkouris (2015). The study 
explored modules consisting of overlapping subsets of questions which led to more efficient 
estimation because the correlations between all items could be leveraged. The process was 
based on BLUE but implemented a calibration weighting procedure on the sampling weights. 

2. Creating Questionnaire Splits for SQD 
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2.1. Approaches to Creating the Questionnaire Splits 

Statistical perspective 

Gonzalez and Eltinge (2007) summarized the methods for creating the split questionnaire forms 
in the Consumer Expenditure Survey. They discussed the concepts of determining the number 
of modules and split forms, summarizing research into assignment of questions to different 
modules based on survey item logic, item themes and correlations between questions. One 
approach for splitting the full questionnaire was to first assign questions into modules based on 
logical constraints or thematic groups, and then randomly subsample those modules into 
forms. A second approach was the use of statistical criteria such as correlations among 
questions. Items that were highly correlated could be spread across modules so that not all 
modules needed to be included in each form. The strong correlations added more information 
to imputation models for item missingness to account for modules that were not part of the 
form. Another statistical approach was automatic allocation of questions using an algorithm, 
such as those discussed later in this section. Questions that are high priority, or those that 
require more precision, could be incorporated into a core set of questions that were included in 
all forms. The review noted that the number of modules to include in a form should be based 
on the targeted length of the interview and cognitive demand on the respondent. 

Thomas et al. (2006) discussed a method to allocate questions to modules based on their 
correlations with other survey questions in the National Health and Nutrition Examination 
Survey (NHANES) data. The method involved an automated allocation of questions to modules 
using a predictive value based on comparing variance between the imputed estimator and non-
imputed estimator. The authors found the approach to yield low bias compared to the full 
survey, but larger loss in precision than expected attributed to choosing a variety of NHANES 
health characteristics without giving enough consideration to the fact that they were not 
strongly correlated with other survey items, or represented rare events. 

Ioannidis et al. (2016) started with the basic SQD approach where modules of exclusive 
questions were split across a set number of forms. They examined how to allocate modules to 
reduce survey cost and respondent burden based on overall precision requirements and 
building on Chipperfield and Steel (2009), where some modules were included in more forms 
than others to meet power requirements. The use of a random search optimization model was 
explored to minimize cost, while meeting precision and survey design requirements. The 
authors were able to reduce computational burden in their optimization model by reducing the 
set of considered forms. As described in the next section, one of the downsides of this 
approach is that the random search optimization model does not make use of correlations 
between items to inform the allocation of questions to modules. 

Cognitive perspective 

None of these approaches are consistent with what we know about cognitive processing in the 
context of survey design and administration. The popular models for human memory structure 
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suggest that it would be optimal to organize a series of questions by domain (e.g., topic and 
chronology) rather than go back and forth across domains (Schank and Abelson’s theory of 
scripts (1977); Shank’s theory on memory organization packets (1982); Tulving’s model for 
memory structure (1983); Kolodner’s CYRUS model (1985), and Conway’s multilayered model 
(1996)). The memory organization would also suggest that once a person is thinking on a topic, 
it would be easier and more accurate to recall information on this topic as opposed to switching 
to another, unrelated topic, which is what the sampling of questions from each domain would 
lead to. 

Disrupting the structure of a questionnaire can result in unexpected context effects, especially 
in attitudinal questions. Context effects in surveys can be associated with the mode of data 
collection, question order, or response option order. Context effects due to question order are 
of focal interest within the context of SQD. Previous questions can provide context for 
subsequent questions in a number of ways—by establishing a norm of reciprocity (e.g., Hyman 
and Sheatsley’s (1950) experiment with Communist reporters in the U.S. and U.S. reporters in a 
Communist country like Russia); by altering the frame in which subsequent questions are 
interpreted (e.g., knowledge questions followed by an attitude question and vice versa); by 
changing the salience of different alternatives when open-ended questions are asked (e.g., the 
“most important problem facing the country” is influenced by what questions were asked first); 
by creating part-whole contrast effects (e.g., Kalton, Collins and Brook’s (1978) general-specific 
and specific-general questions), and by inducing response set bias in series of questions that 
use the same response format. 

There are no procedures for eliminating question order effects. Randomization is often used for 
series of questions that use the same response format to minimize the impact of question order 
effects within the series—this approach does not eliminate the effect itself but ensures the 
response set bias is spread evenly. However, in SQD with a limited number of forms, it means 
that questions on the same topic can be asked in a different context for all respondents in one 
form verses another. This has multiple potential implications, including making estimates 
dependent on the sample allocation to each form. In SDQ, split assignments should follow the 
best practices of questionnaire design—modules should be grouped by topic and presented in a 
logical order. 

2.2. Assignment of Questionnaire Splits to Sample Members 

In response to Ioannidis et al. (2016), Chipperfield (2016) noted that the use of a Horvitz-
Thompson estimator meant correlations among questions between different modules were 
ignored. He argued that the accuracy of the estimates, whether using a model-based or 
sampling model-assisted approach, could have been improved if estimation accounted for such 
correlations and if the SQD was designed to split items that were highly correlated across 
modules. Furthermore, limiting module assignment to a set number per form reduced the 
ability to analyze higher order interactions between questions that are spread out across 
multiple modules. Finally, Chipperfield (2016) argued that assignment to modules based on 
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known respondent characteristics could lead to a more efficient design (Missing at Random 
instead of MCAR) due to gains from assigning modules to individuals based on who would 
contribute the most information to the imputation model. For example, when considering a 
health outcome such as diabetes Chipperfield noted that an individual with diabetes would 
contribute as much information to a maximum likelihood model as 400 people without 
diabetes.  

In addition to the survey questions themselves, Gonzalez (2012) examined the use of prior 
information about respondents when determining the splits. His research was based on panel 
surveys used to produce cross-sectional population estimates, where information on sampled 
individuals was available from prior rounds. All participants were given a full questionnaire as 
their first interview and then five different approaches were tested to split the questionnaire 
using prior information known for panel members. He found that using prior information led to 
higher levels of precision compared to SQD designs that were not informed by such data and 
allowed for accurate targeting of questions, saving time and burden. This approach expanded 
on prior studies (e.g., Thomas et al., 2006) which only focused on the survey questions to split 
the questionnaire. Additional considerations and implications for longitudinal surveys (meant to 
be analyzed as a dataset with measures at multiple points in time) are addressed in the next 
section. 

The use of respondent information to split forms for SQD was also explored for the New South 
Wales Health Survey by Chipperfield et al. (2018). They allocated SQD modules to individuals 
based on their characteristics. This meant that missing survey items due to module assignment 
were MAR,  instead of the default MCAR, which improved efficiency. One important finding was 
that individual characteristics would allow to determine if a respondent would contribute 
meaningfully to the precision of the regression coefficient in a logistic regression model. This 
approach could guide the splits of the questionnaire, as individuals who are less likely to 
contribute to the precision of an estimate would not be asked the item associated with it. The 
approach focused on binary variables and requires prior information on the survey from a 
similar proxy survey or a prior round. Information loss due to SQD was simulated. The authors 
noted that all covariates should be collected for respondents with rare outcome characteristics, 
but for those without such rare characteristic, the covariates should be collected with a lower 
probability. In their evaluation, the impact of SQD was measured using cost models for time 
spent interviewing and estimated variance. It is important to note that this research focused on 
analytic modeling and not the estimation of means or totals. Consideration should be given to 
the impact on bias for means and totals due to prioritizing covariate responses from sample 
members with more rare outcomes. Bias could likely be reduced through proper 
implementation of imputation methods. 

2.3. Extensions to longitudinal survey designs 

There are a few studies that examine SQD in longitudinal surveys. Jorgensen et al. (2014) split a 
questionnaire using a standard 3-form approach and examined the impact on a longitudinal 



 6 

panel study. They tested different approaches to assign questions to forms and found that 
rotating the forms assigned to individuals across data collection waves performed the best with 
respect to relative efficiency and bias. 

Imbriano (2018) and Imbriano and Raghunathan (2020) expanded upon the work in Jorgensen 
et al. (2014) using a 3-form approach for a longitudinal panel survey. Six different methods 
were tested to rotate the forms across waves, de facto varying three factors: assigning different 
or the same modules across waves after the initial assignment, combing both approaches, and 
the number of forms (this condition simply used random assignment). Evaluation used 
simulated data for the Health and Retirement Study (HRS) data. The performance of the six 
methods in the simulation was highly dependent on the correlation structure between the 
survey questions. As part of this research, Imbriano and Raghunathan (2020) also examined the 
use of Kullback-Leibler divergence to optimize survey question allocation to the forms. Using 
Bayesian approaches, they measured differences between the posterior distributions of 
questions including imputed missing data and the posterior distributions without using missing 
data.  The conclusion was that the optimal approach depended on the correlational structure of 
the data and the estimands of interest. In all likely scenarios (presence of correlations among 
items in different modules and some autocorrelation), the authors acknowledged that assigning 
different modules across waves and using a limited number of forms outperformed all other 
approaches to assignment of the modules in the simulation. Not surprisingly, it was also the 
approach that performed best in terms of point estimates, variances, and estimates of change. 

Ioannidis et al. (2016) investigated the use of SQD to integrate multiple separate and 
independent surveys. They expanded the approach to allocate modules based on precision 
constraints to account for the periodicity and overlap of different instruments. Their approach 
used a balancing matrix to align all instruments that overlapped on the same time schedules to 
combine their individual samples. A main strength of this approach is in its flexibility to 
incorporate new modules, or eliminate redundant ones, adjust the precision parameters for 
certain modules and cross modules with each other. 

3. Imputation for Split Questionnaire Designs in Complex Samples 
 
By definition, a split questionnaire survey design has missing data values by design, i.e., planned 
missingness. There are four general, and not mutually exclusive, categories of methods to 
account for the missing data: (1) complete or available case analysis, (2) weighting procedures, 
(3) imputation-based methods, and (4) model-based methods (Little and Rubin 2002, pp. 19-
20). This section focuses on the imputation-based methods as a flexible method that does not 
ignore the missing data, leverages associations between variables, and yields complete 
rectangular datasets to which usual analytic approaches could be applied. 
 



 7 

Ford (1983) provided a definition of imputation-based methods as a procedure that imputes a 
value for each missing value. How the value is calculated is not important to the definition. For 
example, a hot-deck imputation procedure is one that uses an observed value to replace the 
missing value. Other methods, e.g., regression models, may use a fully parametric model and 
draw imputed values for a posterior predictive distribution. 
 
Historically, some of the main imputation methods included: use of dummy indicators, using 
the mean or mode as the imputed value, using expected values from regression models, and 
using the last observation carried forward in longitudinal designs. All of these methods often 
involve unrealistic assumptions, risk of bias in resulting estimates, and often distortion of 
distributions. Better imputation methods can preserve the distributional properties of the 
observed data and reduce the risk of bias in different estimands. Two very different approaches 
are hot deck and regression-based methods; both can employ sophisticated models, but one 
imputes with observed values and the other does not. 
 
In this section, we review developments in hot deck and regression-based methods in the 
context of multiple imputation. We also include comparisons between the hot deck and 
multiple imputation methods. We note efforts to incorporate the complex survey design in the 
imputation process. Finally, we briefly discuss the incorporation of paradata into the imputation 
process, as a way to augment the imputation models. 
 

3.1. Imputation Methodology 
 
Multiple Imputation 
 
Multiple imputation (MI) was first proposed by Rubin (1978) to calculate variances that capture 
the uncertainty due to imputation. To calculate the MI variance of an estimate of some 
parameter θ, e.g., a mean, one creates M independent imputations to create M complete data 
sets. Using standard statistical procedures, one estimates θ from each of the M complete data 
sets. The point estimate for θ is 
 
𝜃𝜃𝑀𝑀���� = ∑ 𝜃𝜃𝑚𝑚�𝑀𝑀

𝑚𝑚=1 , 
 
where 𝜃𝜃𝑚𝑚�  are the estimates of θ from each of the M complete data sets. Calculate the variance 
associated with  𝜃𝜃𝑚𝑚� , and call it 𝑊𝑊𝑚𝑚� . The average of the M variances is  
 
𝑊𝑊𝑀𝑀����� = ∑ 𝑊𝑊𝑚𝑚�𝑀𝑀

𝑚𝑚=1 . 
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Calculate the between imputation variance as 
 

𝐵𝐵𝑀𝑀 = 1
𝑀𝑀−1

∑ �𝜃𝜃𝑚𝑚� − 𝜃𝜃𝑀𝑀�����
2𝑀𝑀

𝑚𝑚=1  . 

 
The total variance of 𝜃𝜃𝑀𝑀���� is 
 

𝑉𝑉(𝜃𝜃𝑀𝑀���� ) = 𝑊𝑊𝑀𝑀����� +
𝑀𝑀 + 1
𝑀𝑀

𝐵𝐵𝑀𝑀 

 
 
SQD was first proposed by Raghunathan and Grizzle (1995), it included an MI method to 
produce imputed values for analysis. In that article they assumed simple random sampling. The 
authors mention complex surveys and state, “In complex surveys, the assignment of 
components to individuals sampled may depend on the sample design. For example, in 
stratified sample design, we may want to tailor the assignment mechanism so that the desired 
stratum specific population quantities (e.g., correlations coefficients) can be estimated. The 
imputation method may also require modification in complex surveys [Italics added]” 
(Raghunathan and Grizzle 1995, p. 61). Although, they do not explain what modifications may 
be required. 
 
The inclusion of survey design information as independent variables in MI goes back to at least 
Rubin (1987). He states, “… if there exists any auxiliary information available on the units and 
we wish to incorporate it in our survey design or data analysis, then without loss of generality 
this information can be used to create covariates or stratification variables” (Rubin 1987, pp. 
27-28). 
 
Fay (1992) pointed out how MI variance estimates can be biased when the imputation and 
analysis models differ. Meng (1994) provided a framework for this bias and termed it 
“uncongeniality.” Others have shown how this problem arises—particularly due to the complex 
survey design—and have suggested potential solutions (e.g., Robins and Wang, 2000; Kim et al., 
2006). Xie and Meng (2017) provide a comprehensive description of the issue and solutions. For 
many, if not most, the potential bias in variance estimates due to uncongeniality is secondary, 
at best. The primary concern should be the unbiasedness of key estimates, and any bias in 
variance estimates can only be considered in this context. 
 
Hot Deck Multiple Imputation (HDMI) 
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Ford (1983) presents three “general statistical characteristics which are major arguments for 
the use of hot-deck procedures: reduction of the nonresponse bias, production of clean data 
set [a data set that appears complete and consistent], and preservation of the distribution of 
the population as represented by a sample. The first characteristic is included in the third, but it 
is important enough to deserve separate attention” (Ford 1983, p. 187). The third characteristic 
encompasses preserving joint and marginal distributions. That is, internal consistency by 
examining relationships among variables for a given sampling unit and external consistency by 
examining the relationships among the sampling units for a given variable, i.e., the distribution 
properties of each variable (Ford 1983, p. 190). 
 
In hot-deck imputation, classes—mutually exclusive groups—of sample records are created so 
that the sample members are homogenous within each class and heterogenous across classes. 
Missing values for a record are imputed using observed values from other records in the same 
class. 
 
Analogous to regression-based methods that depend on the model specification, the burden 
here is on the selection of classification variables (Ford 1983, p. 186). However, a key difference 
is that disjoint groups need to be selected, and the number of cells needs to be controlled. 
 
A comprehensive contemporary review article for hot deck imputation is A Review of Hot Deck 
Imputation for Survey Non-response by Andridge and Little (2010). It discusses methods for 
creating donor pools such as adjustment cell methods and metrics for matching donors to 
recipients; multivariate missing data describing approaches to different patterns of 
missingness; and variance estimation such as explicit variance formulae, resampling methods 
for single imputation, and multiple imputation for hot deck using a “proper” multiple 
imputation method. It also discusses the role of sampling weights, properties of hot deck 
estimates, and detailed examples. 
 
As stated above, Andridge and Little (2010, p. 54) mention multiple imputation for hot deck in 
the context of variance estimation. They cite Rubin (1978) that when the same donor pool is 
used for a respondent’s missing value for all MI data sets, the method is not a proper MI 
procedure. To properly implement HDMI, Bayesian Bootstrap (Rubin 1981) or Approximate 
Bayesian Bootstrap (Rubin and Schenker 1986) methods could be considered when creating the 
multiple imputations. 
 
Cranmer and Gill (2013) present a method they call multiple hot deck imputation.  “This tool is 
designed specifically to work well in situations where (traditional) parametric multiple 
imputation falls short” (Cranmer and Gill 2003, p. 426). Their major criticism is that parametric 
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multiple imputation assumes a continuous outcome, produces continuous imputed values, and 
transforms the imputed continuous values to categorical data. This criticism may not be as valid 
now that multiple imputation procedures incorporate a wider variety models, which include 
models for categorical data.  A caution with this method is that their procedure uses affinity 
scores to create imputation classes and hot deck to select donors for missing values across the 
multiple data sets. Consequently, their procedure may suffer from the caution provided in the 
preceding paragraph about using the same donor for a respondent across all data sets. 
 
Sequential Regression Multiple Imputation (SRMI)1 
 
For each of the M imputation data sets created, the sequential regression multiple imputation 
approach (van Buuren, et al. 1999, Raghunathan et al. 2001, van Buuren and Groothuis-
Oudshoorn 2011, Raghunathan 2016, Raghunathan et al. 2016, and van Buuren 2018) 
implements an approach that eventually uses all variables to imputed the missing values for 
each variable. To begin the process, the complete response variables on the data set are used 
as possible independent variables in the imputation model for the “first” variable with missing 
data. There are different variable visit sequences defining the first variable, e.g., smallest 
amount of missingness to largest amount of missingness or as they appear on the data file. The 
process proceeds sequentially through the other variables with missing data using all the 
complete response variables and any previously imputed variables as possible independent 
variables in the imputation model. Once all the variables on the data have been imputed, the 
first cycle of the process is complete.  
 
For any additional cycles, the imputed values for the first variable imputed are replaced by new 
imputations using all the other variables on data set, both complete response and imputed 
variables, as possible independent variables in the imputation model. The process proceeds 
sequentially through the other variables as it did in the first cycle using all the other variables 
on the data set, including the re-imputed variables, as possible independent variables in the 
imputation model. Once all the variables with initial missing data have been re-imputed, the 
second cycle is complete. The process proceeds through any additional specified cycles to 
complete the model-based imputation process for the first imputed data set. Raghunathan 
(2016, p. 69) states, “Empirical analysis show that 5 to 10 iterations are sufficient to condition 
the imputed values on any variable on all other variables.” Van Buuren (2018, p. 120) concurs 
with Raghunathan but later states that the MICE algorithm should be monitored for 
convergence (van Buuren 2018, pp. 187-188) by using a combination of tools to assess 
convergence. This process is repeated for each multiply-imputed data set. 

 
1 SRMI is also known as fully conditional specification or multivariate imputation by chained equations. 
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Complex Survey Design 
 
Accounting for the complex survey design and differential weighting in imputation is often not 
addressed when imputing data from a complex survey design. Most imputation methods are 
applied to data from simple random samples or complex survey samples treated as simple 
random samples. There has been some focus on how to incorporate the complex survey design 
and differential weighting in imputation methods. The general approach to incorporating the 
complex survey design in MI is to include the design variables as covariates in the imputation 
models. For example, in the context of split questionnaire design from the National Health and 
Nutrition Examination Survey, Thomas et al. (2006) provided a more detailed explanation of 
how they accounted for the complex survey design for their simulation using MI. In their 
simulation they included strata and clusters nested within strata as main effects in their 
imputation model. In addition, they include the logarithm of the sample weight as a main effect 
in the model along with core data items, which are especially important or are predictive of 
many of the spit items, and split items, the items only administered to a set of respondents.  
 
For a more detailed look at the use of sampling weights, Andridge and Little (2009) investigated 
the preferred way to incorporate the sampling weights into hot deck imputation. Their 
conclusion was that the correct approach is to use the sampling weight as a stratifying variable 
alongside additional adjustment variables when forming adjustment cells. 
 
Other Alternatives 
 
A more recent article by Brunton-Smith and Tarling (2017) mentions a third imputation 
approach, doubly robust inverse probability weight (DRIPW). “Of the three methods listed, [MI, 
FIML, and DRIPW], multiple imputation (MI) is emerging as the most popular” (Brunton-Smith 
and Tarling 2017, p. 710). In addition, they focus on a multilevel imputation procedure in Stat-
JR using the 2LevelImpute templet developed by the Centre for Multilevel Modeling (Charlton 
et al. 2013, Goldstein and Parker 2014).  
 
Thomas et al. (2006) provide an alternative to multiple imputation for SQD. They state, “An 
alternative to the multiple imputation estimation is two-phase weighting based on core item 
estimators and their differences between blocks. Any advantage in efficiency from multiple-
imputation estimation would be due to the additional information from the split items” 
(Thomas et al. 2006, p. 227). Thomas et al. (2006) also conclude that, for regression problems, 
“the multiple-imputation estimators are generally more efficient than the no-imputation 
estimators for regression problems. Nevertheless, the losses in efficiency of the multiple-
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imputation estimators relative to the complete-data estimators from some coefficients as well 
as gains in efficiency for other coefficients are worth further investigation” (Thomas et al. 2006, 
p. 229). 
 

3.2. Comparisons 
 
In the context of democratization and modernization theory, Cranmer and Gill (2013) used a 
Monte Carlo simulation to demonstrate their “multiple hot deck imputation,” which was 
specifically designed to work well in situation where (traditional) parametric multiple 
imputation falls short, i.e., using a continuous distributional assumption for a distribution with a 
few discrete values. Under the conditions of the Monte Carlo simulation, multiple hot deck 
imputation was less biased than casewise deletion and parametric multiple imputation using 
the Amelia package implemented in R. Although, as noted previously, their procedure may 
suffer from using the same donor for a respondent across all data sets. In addition, more recent 
advances in MICE have include a wide variety of methods that can handle discrete data. 
Consequently, this may not be as much of a problem as when this article was published. 
 
Using the Current Population Survey Annual Social and Economic Supplement data, Hokayem, 
Raghunathan, and Rothbaum (2015) compared estimates, e.g., median income and poverty 
estimates, between hot deck and two SRMI procedures. One of the SRMI procedures uses only 
the survey data; the other procedure uses the survey data and additional auxiliary information. 
Their general conclusion is, even with the added variance introduced by accounting for the 
imputation uncertainty, both SRMI models have more precise estimates of poverty than hot 
deck. 
 
A 2017 study (Center for Behavioral Health Statistics and Quality, 2017) that compared 
predictive mean neighborhood, weighted sequential hot deck, sequential regression 
multivariate imputation, and a modified predictive mean neighborhood multiple imputation for 
the National Survey on Drug Use and Health (NSDUH) concluded that the results did not differ 
much by method, for estimates of substance use. However, the report noted that this could 
have been due to the low item nonresponse that was being imputed—an average of less than 5 
percent. From a practical perspective, the simpler methods with fewer consistency checks 
yielded more inconsistent data that makes it more difficult for analysis.   
 
A comparative study of modern imputation techniques by Zaninotto and Saker (2017), 
investigated FIML and three MI imputation techniques, multivariate normal imputation, 
multiple imputation by chained equations (MICE), and, for repeated measures, the two-fold 
fully conditional specification. Their conclusion was that, under the conditions of the 



 13 

simulation, MICE is the preferred method. For a continuous outcome, they showed in 
longitudinal studies with non-monotone missing, FIML and MI techniques all perform well. 
Comparing MI and FIML techniques, MI might be better at incorporating interaction terms. It 
was also shown that MICE and two-fold FCS produced estimates that were more accurate and 
precise than those obtained from FIML and multivariate normal imputation techniques, 
especially when dealing with non-continuous variables and interaction terms. The results of this 
study showed that MICE in general showed slightly better precision and accuracy than two-fold 
FCS. 
 
Bertsimas, Pawlowski, and Zhuo (2018) propose an imputation method based on a general 
optimization framework with a predictive model-based cost function that explicitly handles 
both continuous and categorical variables and can be used to generate multiple imputations.  
They review an extensive list of different imputation methods. Of the approximately 20 
imputation methods they review, five methods use single imputation, (i.e., mean imputation, K-
nearest neighbors (KNN), iterative KNN, Bayesian principal component analysis, and predictive 
mean matching), and one imputation method uses multiple imputation, multivariate 
imputation by chained equations. The apply their method and the other imputation methods to 
84 data sets taken from the UCI Machine Learning Repository and compare the imputation 
methods. They show that their method yields statistically significant gains in imputation quality 
over the alternative imputation methods, which leads to improved performance for 
classification and regression models based on the imputed data. 
 

3.3. Paradata 

Paradata (Couper, 1998) was first defined as data that are created in the process of collecting 
survey data, such as keystroke data. It has since been expanded to include a variety of sources, 
including deliberately designed interviewer observations. Paradata have received little 
attention in imputation. Peytchev (2012) used different types of paradata to impute for 
nonresponse and measurement error in the National Survey of Family Growth data. He found 
that interviewer-related paradata such as education and religiosity were related to 
nonresponse, while respondents’ self-reports about comfort with providing sensitive 
information were related to measurement error. These variables were then used in multiple 
imputation using SRMI to augment the models. 

In the context of a longitudinal study of prison inmates, Brunton-Smith and Tarling (2017) 
describe their use of paradata to understand unit nonresponse and create variables for use in 
the imputation process. They explored the reasons for data being missing, details of the timings 
for each interview attempt, and the prison in which the interview was to take place. In addition 
to all the survey items collected during the initial interview, administrative data related to 
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reoffending, and prison characteristics, the paradata “were used as the basis for two multilevel 
logistic regression models: the factors associated with non-contact; and the factors associated 
with non-compliance conditional on successful contact. As unit response rates varied between 
prisons, a multilevel structure (Goldstein 2011) was specified, with prisoners grouped within 
prisons, reflecting additional structural constraints on prisoners’ involvement in the follow up 
interview” (Brunton-Smith and Tarling 2017, p. 713). “The models confirmed the importance of 
structural processes outside of the control of individual prisoners in driving unit missingness. 
For example, in the contact model, sufficient lead time to secure contact with prisoners who 
had shorter sentences, those serving theft, drug offences were more difficult to contact. For the 
cooperation model, prisoners who had a previous prison sentence or who had previously 
convicted of burglary had higher odds of contact (Brunton-Smith and Tarling 2017, p. 714). 

4. Summary 

A literature review is helpful in identifying not only relevant findings, but also omissions that 
merit further research. There are some notable limitations in the literature related to SQD, 
related to the almost exclusive focus on statistical aspects and limited experimentation: 

• Almost all studies are based on simulations, so the methods used rely on model 
assumptions rather than design. 

• Simulation studies do not allow us to study the nonresponse and measurement 
properties of SQD. 

• Nonresponse due to survey length cannot be simulated. 

• Changes in responses due to length cannot be simulated. 

• Context effects that are due to different questionnaire structure cannot be 
examined. 

To elaborate, when evaluating alternative splits for a questionnaire, simulation studies use 
generated data or observed full survey data and impose different scenarios. These simulations 
require assumptions that are unlikely to hold true, based on the findings in the research 
literature on questionnaire design. Question order effects would suggest that questions cannot 
be randomly sampled into a form, yet simulations assume no variation in responses related to 
how the splits are created. 

The second set of related limitations is the inability to demonstrate the potential benefits of 
using a SQD beyond reduction in variance. The common motivation is the reduction in 
respondent burden, but empirical experiments (note that in some disciplines simulations are 
referred to as experiments or simulated experiments) are needed to examine potential 
reduction in nonresponse bias and measurement error. 
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There are some direct implications for our future research: 

• We will start with constraints imposed by questionnaire design and only then 
consider additional factors such as inter-item correlations. 

• We still find greatest promise in the SRMI method, and find the HDMI method to be 
the most promising major alternative. This review did not find any new major 
alternative. 

Despite the introduction of SQD a quarter of a century ago, there are substantial gaps in our 
understanding of when SQD is feasible and desirable. Additional research comparing alternative 
imputation procedures and possible covariates (e.g., paradata) is also needed. 
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